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A new and versatile synthetic route to a benzophenanthridine alkaloid was developed by a bond forma-
tion between C4b and N5 on the benzo[c]phenanthridine nucleus, using a microwave-assisted electrocy-
clic reaction of the aza 6p-electron system. This strategy was successfully used to synthesize nornitidine
(1b), noravicine (1d), and isodecaline (1f).
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Figure 1.
New and more versatile synthetic routes to benzo[c]phenanthri-
dines are in high demand,1–7 because of their potent anti-tumor
activity.8–17 Among benzo[c]phenanthridines, nitidine (1a) and
7-hydroxy-8-methoxy-5-methyl-2,3-methylenedioxybenzo[c]phe-
nanthridinium hydrogen sulfate (NK109) (1e) are the most promis-
ing compounds, exhibiting significant anti-tumor activity against
drug-resistant human tumor cell lines.18–21 Nitidine (1e) is a potent
inhibitor of topoisomerase II.21

In our laboratory, we have focused on the construction of
fused pyridine ring systems, such as furoisoquinoline,22 phenan-
thridine,23 b-carboline,24 and azaanthraquinone alkaloids,25

using a microwave-assisted electrocyclic reaction of the aza
6p-electron system. Here, we describe a new and versatile syn-
thesis of benzo[c]phenanthridine alkaloids, using the micro-
wave-assisted electrocyclic reaction of the aza 6p-electron
system to induce bond formation between the C4b and N5-
positions13 in the tetracyclic benzo[c]phenanthridine nucleus
(Fig. 1).

We planned the syntheses of nornitidine (1b), noravicine
(1d), and isodecarine (1f), derived from 11,12-dihydro-
benzo[c]phenanthridines 2 as shown in retro-synthetic Scheme
1. Dihydro-compound 2 would be obtained from a 2-cyclo-
alkenylbenzaldoxime methyl ether 3 through a microwave-as-
sisted electrocyclic reaction. An oxime ether 3 could be
prepared from 2-cycloalkenylbenzaldehyde 4, which would be
provided by the Suzuki–Miyaura reaction between 2-bromo-
benzaldehyde 5 and 2-(6,7-methylenedioxy-3,4-dihydronaph-
thyl)boronic acid pinacol ester 6.

Initially, to obtain a required pinacol borate 6, we attempted
an alternative synthesis of 6,7-methylenedioxy-b-tetralone (7)
(Scheme 2). Treatment of 2-allyl-4,5-methylenedioxyphenol
ll rights reserved.
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(8)26 with trifluoromethanesulfonyl anhydride (Tf2O) and pyri-
dine afforded the O-triflate 9,27 which was subjected to the
Stille reaction with allyltributyltin in the presence of
PdCl2(PPh3)2 and LiCl to give the diallylbenzene 10. Olefin
metathesis of diallylbenzene 10 with the Grubbs’s I catalyst
yielded 1,4-dihydronaphthalene 11, which was subjected to
hydroboration followed by oxidation to afford 2-hydroxytetra-
hydronaphthalene 12. The alcohol 12 was subsequently oxidized
by pyridinium chlorochromate (PCC) in CH2Cl2 to give the
known b-tetralone 7.28 The unstable tetralone 7 was immedi-
ately treated with N-phenylbis(trifluoromethanesulfonamide
(Tf2NPh) and LDA to obtain the triflate 13, via a reaction with
bis(pinacolate)diborane and PdCl2(dppf)29 to afford the expected
pinacol borate 6.

Next, the Suzuki–Miyaura reaction of readily available
2-bromobenzaldehydes (5b, 5d, and 5f) with the prepared
pinacol borate 6 smoothly proceeded in the presence of
PdCl2(PPh3)2 to give the 2-cycloalkenylbenzaldehydes 4b and
4d, or in the presence of PdCl2(dppf)30 to give 4f. The reaction
of 5f with 6, however, yielded the deacetylated product 4f.
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Scheme 2. Reagents and conditions: (a) Tf2O, pyridine, CH2Cl2, rt, 2 h, 93%; (b)
allyltributyltin, LiCl, PdCl2(PPh3)2, dppf, DMF, 180 �C, 2 h, 99%; (c) Grubbs’s I
catalyst, CH2Cl2, 50 �C, 1 h, 99%; (d) (i) BH3, THF, 0 �C, 1 h, (ii) 28% H2O2, 3 M NaOH,
50 �C, 1 h, 86%; (e) PCC, CH2Cl2, rt, 1.5 h, 74%; (f) LDA, Tf2NPh, THF, �78 �C to rt, 4 h,
84%; (g) bis(pinacolate)diborane, AcOK, PdCl2(dppf), DMSO, 70 �C, 1 h, 86%.
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Scheme 3. Reagents and conditions: (a) PdCl2(PPh3)2, or PdCl2(dppf) in the case of 4f, K
AcONa, EtOH, 80 �C, 1 h, 95% (3b), 98% (3d), 95% (3f); (c) Ac2O, Et3N, DMAP, CH2Cl2, 80 �C,
10% Pd–C, 1,2-dichlorobenzene, 180 �C, 97% (1b), 74% (1d), 93% (1g); (f) KHCO3, MeOH,

K. Kohno et al. / Tetrahedron Letters 50 (2009) 590–592 591
Subsequent treatment of 4 with hydroxylamine methyl ether
afforded oximes (3b, 3d, and 3f). The oxime ether 3f was con-
verted to the acetyl compound 3g, and then oximes 3b, 3d,
and 3g were subjected to a microwave-assisted electrocyclic
reaction at 180 �C to give the tetracyclic 11,12-dihydro-
benzo[c]phenanthridines (2b, 2d, and 2g) in good to excellent
yield (Scheme 3).31,32

Finally, the dihydrobenzophenanthridines 2b, 2d, and 2g were
oxidized by refluxing with 10% Pd–C in 1,2-dichlorobenzene to give
norniitidine (1b), noravicine (1d), and O-acetylisodecaline (1g),
respectively. Hydrolysis of the acetyl group of 1g with KHCO3 affor-
ded isodecaline (1f). The physical and spectroscopic data of 1b,32–

34 1d,32–34 and 1f34,35 were identified by comparing them with
those previously reported.36

In conclusion, an alternative synthesis of 6,7-methylenedioxy-
b-tetralone (7) was achieved in a five-step sequence, and the de-
sired reagent of the Suzuki–Miyaura reaction, pinacol borate 6,
was derived in two steps. After the C–C bond connection between
C9a and C9b by the Suzuki–Miyaura reaction, a new synthetic
strategy for anti-tumor benzo[c]phenanthridines was established
by inducing a bond formation between C4b and N5 using a micro-
wave-assisted electrocyclic reaction of the aza 6p-electron system.
Formal total syntheses of nitidine (1a) and avicine (1c) were
achieved. In addition, the total synthesis of isodecaline (1f) was
completed. This new synthetic strategy will be an useful procedure
for the synthesis of other benzo[c]phenanthridine alkaloids.
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